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The dynamical organization in the presence of noise of a Boolean neural
network with random connections is analyzed. For low levels of noise, the
system reaches a stationary state in which the majority of its elements acquire
the same value. It is shown that, under very general conditions, there exists a
critical value gc of the noise, below which the network remains organized and
above which it behaves randomly. The existence and nature of the phase transi-
tion are computed analytically, showing that the critical exponent is 1/2. The
dependence of gc on the parameters of the network is obtained. These results are
then compared with two numerical realizations of the network.
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1. INTRODUCTION

Booleannetworkshavebeenused todescribeawidevarietyof complexsystems.
They provide a common language for models of associative memory, (1–3)

spin glasses, (4–7) dynamics of evolution, (8–10) and cellular automata. (11–14)A typi-
cal Boolean network model consists of a set of binary elements (also called
nodes, neurons or spins, depending on the context) which are connected
among them to form a net. The value of each element at a given time
depends on the value at the previous time step of all the nodes that are
connected to it.
The use of common tools of statistical physics has revealed a strong

parallel between Boolean networks and dynamical systems. In this context,



several authors have studied the non-equilibrium dynamics of deterministic
Boolean networks and, in particular, the one of neural networks. (15, 16) Their
work has unveiled the existence of a variety of possible collective behaviors
such as synchronized oscillations or chaos. (3, 17, 18) On a similar perspective,
the influence of noise on the dynamics of Boolean networks has been
analyzed in refs. 19 and 20. It is shown that, for increasing noise level, the
barriers separating different attractors decrease and then disappear.
We are interested in considering the changes in the dynamical proper-

ties of a deterministic system in the presence of noise. Following this moti-
vation, we study a simple Boolean network model exhibiting self-organiza-
tion and analyze its tolerance to the effect of noise. We show analytically
that the system undergoes a dynamical second-order phase transition as its
amount of randomness is increased.
The paper is organized as follows. In Section 2, we describe the neural

network model with noise. Section 3 introduces the definition of the order
parameter characterizing the network and presents numerical evidence for
the phase transition by considering two particular network examples. In
Section 4 we find the dynamical equation satisfied by the order parameter
and compute analytically its fixed points, exhibiting the phase transition.
In Section 5 we apply these results to the two cases studied in Section 3.
Finally, Section 6 is our conclusion.

2. DEFINITION OF THE MODEL

Consider a neural network composed of N elements {s1, s2,..., sN},
each of which can only take the values si=−1 or si=+1. Every si is
randomly connected to any K elements of the network, which define its set
of linkages {sij}j=1,..., K (see Fig. 1). The parameter K is the connectivity of
the network. Each linkage sij is weighted by an independent random vari-
able cij that is chosen with a probability density function (PDF) given by
Pc(x). The NK connections of a network, and its corresponding weights,
remain fixed throughout the evolution of the system.

Fig. 1. Schematic representation of the structure of the network. Every element si is con-
nected to K other elements {si1 ,..., siK} (the linkages), which are chosen at random from the
entire set {si}i=1· · ·N. The contribution of each sij element to the input function of si is
weighted by cij as given in Eq. (1).
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At every discrete time step, each si receives a signal +1 or −1 equal
to the input function

f(ci1,..., ciK; si1 ,..., siK )=Sign 3 C
K

j=1
cijsij 4 (1)

For the particular case in which we have for all weights cij=1, this defini-
tion corresponds to the majority rule, in which f takes the same value as
the majority of the linkages.
Using the input function (1), we define a stochastic evolution rule for

every si by introducing a noise intensity g such that

si(t+1)=˛
f(ci1 · · · ciK; si1 (t) · · ·siK (t)) with probability 1−g
−f(ci1 · · · ciK; si1 (t) · · ·siK (t)) with probability g

(2)

The dynamics can thus be set from purely deterministic to purely random
by varying g between 0 and 1/2. Note that in the case with g=0, the
system will typically converge to an ordered state in which all the si are
equal.
Due to the presence of noise and to the randomness in the initial

assignment of the linkages, the statistical properties of the dynamics of the
network do not change if the connection weights or the linkages are either
time-independent or if they are randomly re-assigned at every time step.
Using the language of boolean networks, this means that for the model
presented here the annealed and quenched dynamics are equivalent. (21)

3. NUMERICAL EVIDENCE

In this section we perform a numerical study of the evolution of the
neural network model introduced above. We show that the system
undergoes a dynamical phase transition (for NQ.) from an ordered to a
disordered state as the noise intensity g is increased. The analytical expres-
sion for this transition will be deduced in Section 4.
Let us define an order parameter that adequately describes the degree

of alignment of the elements of the network. We first introduce

s(t)= lim
NQ.

5 1
N

C
N

i=1
si(t)6 (3)

With this definition, |s(t)| % 1 for an ‘‘ordered’’ system in which most ele-
ments take the same value, while |s(t)| % 0 for a ‘‘disordered’’ system in
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which the elements randomly take values +1 or −1. For systems where
the time-average of |s(t)| converges, a time-independent order parameter
can now be defined as

Y= lim
TQ.

1
T−T0

F
T

T0
|s(t)| dt (4)

where T0 can take any arbitrary finite value without changing Y.
We computed numerically the evolution of the model for a network

with N=100000 elements, connectivity K=11, and random initial condi-
tions. In practice, the order parameter Y was obtained by integrating |s(t)|
from T0=1000 (to drop the initial relaxation dynamics) until T=10000.
A change to a larger integration time produces negligible variations on the
result.
The numerical results presented on Fig. 2 show the bifurcation

diagram of Y as a function of the control parameter g for the case with
cij=1, in which all connection weights are equal. The input function (1)
then simply becomes the majority rule. It is apparent that the system
undergoes a phase transition at gc % 0.32. For g < gc, all elements in the
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Fig. 2. Bifurcation diagram of the order parameter Y as a function of the noise intensity g
for a neural network model in which cij=1 for all weights. A phase transition occurs at
gc 4 0.3153. The numeric and analytic results only differ at g ’ gc, where the blowup shows a
slight difference due to finite size effects.
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Fig. 3. Bifurcation diagram of the order parameter Y as a function of the noise intensity g
for a neural network model where the weights cij follow the PDF defined in (5). A phase
transition occurs at gc 4 0.2838. The blowup shows again the differences between the numeric
and analytic results due to finite size effects (see Fig. 2).

system will tend to align either to+1 or to −1. For g > gc, their values are
randomly distributed. The blowup on Fig. 2 shows the usual finite size
effect on the phase transition, which smoothes the curve near gc.
On Fig. 3 we present the results for the case of a network with fixed

connection weights cij that follow the PDF

Pc(x)=˛
1 if 0 [ x [ 1
0 otherwise.

(5)

The phase transition on this system is qualitatively equivalent to the pre-
vious one, but the critical noise value is now changed to gc % 0.28. The
blowup shows again the finite size effects.

4. ANALYTIC SOLUTION

We will compute here the exact analytic expression that relates the
noise intensity control parameter g and the order parameter Y for any
given PDF of the connection weights Pc(x).
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4.1. Dynamics of the Order Parameter

First, we will relate the probability distribution of the system at a time
t+1 with the one at a time t. In order to do so, let us define fN(t) as the
fraction of elements in the network whose value is+1 at time t:

fN(t)=
1
N

C
N

i=1

si(t)+1
2

(6)

In the thermodynamic limit NQ., the above quantity transforms into the
probability that at time t any arbitrary node si acquires the value+1:

f(t) — Pt{si=+1}= lim
NQ.

fN(t) (7)

Note that from definition (3), the relation between s(t) and f(t) is simply
given by

s(t)=2f(t)−1 (8)

Thus, in a fully ordered state we have |s(t)|=1 and f(t)=0 or 1, while in a
fully disordered state we have |s(t)|=0 and f(t)=1/2.
It is useful to define ti(t) as the argument of the Sign function

appearing in the definition of f for the i th element at a time t (see Eq. (1)),

ti(t)=C
K

j=1
cijsij (t) (9)

If the linkages of every node are assigned in a sufficiently random way,3

3 If the linkages are not assigned randomly, the situation changes. For example if they are
chosen among the first neighbors of every element, there is no phase transition and the
analysis presented here is not applicable.

the products cijsij (t) can be considered as independent random variables.
Therefore, if we denote by Pt(t)(x) and Pcs(t)(x) the PDF associated to ti
and to the product cijsij respectively, then Pt(t)(x) is simply given by the
K-fold convolution of Pcs(t)(x) with itself:

Pt(t)(x)=Pcs(t) f Pcs(t) f · · · f Pcs(t)(x)z
K times

(10)

In terms of Pt(t)(x), the probability I(t) of having the input function
f=+1 at time t can be computed as

I(t) — Pt{f=+1}=F
.

0
Pt(t)(x) dx (11)
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Using the updating rule (2), we can now directly write the probability
f(t+1) of having si(t+1)=+1 in terms of I(t) and g:

f(t+1)=I(t)[1−g]+[1−I(t)] g (12)

This equation describes the stochastic dynamics of the network. Its fixed
points as a function of g will generate the bifurcation diagram showing the
phase transition.

4.2. Probability Distribution of the Input Function

In order to express Eq. (12) in a closed form, we must find how I(t)
relates to f(t), or equivalently to s(t). For this, we first compute Pt(t)(x)
which is in turn determined by Pcs(t)(x). In Fourier space, the convolution
appearing in (10) acquires the simple form

P̂t(t)(l)=[P̂cs(t)(l)]K (13)

where P̂t(t)(l) and P̂cs(t)(l) are the Fourier transforms of Pt(t)(x) and
Pcs(t)(x) respectively.
Since the connection weights cij are distributed according to the prob-

ability function Pc(x), and the variables si(t) evaluate to +1 with proba-
bility f(t) and to −1 with probability 1−f(t), it follows that the PDF of
the products cijsij is given by

Pcs(t)(x)=f(t) Pc(x)+[1−f(t)] Pc(−x) (14)

Taking the Fourier transform of the previous expression, and inserting the
result into Eq. (13), one gets

P̂t(t)(l)=[P̂
g
c (l)+(P̂c(l)− P̂

g
c (l)) f(t)]

K (15)

where the ‘‘g’’ denotes complex conjugation. From the above expression it
is apparent that Pt(t)(x), and consequently I(t), are polynomial functions
of f(t). Therefore, Eq. (12) is a polynomial of degree K in f(t), with solu-
tions that depend on the value of the noise intensity g. As we will see later,
the roots of this polynomial will furnish the bifurcation diagram of the
order parameter.
For convenience, we will write our results in terms of s(t) instead of

f(t) (see Eq. (8)). Substituting f(t)=[s(t)+1]/2 in expression (15) we get

P̂t(t)(l)=5
P̂c(l)+P̂

g
c (l)

2
+
P̂c(l)− P̂

g
c (l)

2
s(t)6

K

(16)
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By denoting ĝ(l) and ĥ(l), the real and imaginary parts of P̂c(l) respec-
tively, P̂t(t)(l) can then be written as

P̂t(t)(l)=[ĝ(l)+iĥ(l) s(t)]K

= C
K

m=0

1K
m
2 [ĝ(l)]K−m [iĥ(l) s(t)]m

whose inverse Fourier transform is

Pt(t)(x)= C
K

m=0

3 im
2p
1K
m
2 F.
−.
[ĝ(l)]K−m [ĥ(l)]m e−ilx dx4 [s(t)]m (17)

We are now in position of computing I(t). Using Eqs. (11) and (17), and
moving the integrals inside the sum we have4

4 The fact that I(t) is a polynomial of degree K in s(t) with constant term 1/2 can be derived
from the results given in ref. 22 for a more general class of random Boolean networks. We
include here the explicit derivation for completeness.

I(t)= C
K

m=0
am[s(t)]m (18)

where the am are constant coefficients that depend only on Pc(l) and are
given by

am=
im

2p
1K
m
2 F.
0

F
.

−.
[ĝ(l)]K−m [ĥ(l)]m e−ilx dl dx (19)

We can formally integrate over x by replacing e−ilxQ e−(il+E) x, computing
the new x-integral, and then evaluating the result at E=0. Our final
formula for the am coefficients gives

am=
−im+1

2p
1K
m
2 F.
−.

1
l
[ĝ(l)]K−m [ĥ(l)]m dl (20)

Note that am=0 for all even values of m. Indeed, since the function ĝ(l) is
even and ĥ(l) is odd, the integrand will be antisymmetric for any even m,
thus vanishing the integral.
It will be useful for later calculations to compute the value of a0. In

fact, it turns out that a0=1/2 for every K and any ‘‘well behaved’’ func-
tion Pc(x). This can be readily proven by extending the integral in (20) to
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Fig. 4. Integration contour C on the complex plane that was used to compute (21). The pole
at the origin is circumvented by the half-circle C1 of radius r.

the complex plane. The integration path C shown on Fig. 4 contains no
poles, therefore

G
C

1
z
[ĝ(z)]K dz=0 (21)

Since Pc(x) is a PDF, Parseval’s theorem guarantees that its Fourier trans-
form is square integrable, which implies >.−. ĝ2(l) dl <.. Therefore, the
contribution of segment C3 to the integral in (21) is zero for RQ.. On the
other hand, being ĝ(l) the real part of the Fourier transform of a PDF,
one has ĝ(0)=1 and thus, for any well behaved function it is possible to
approximate ĝ(r) 4 1 over the small segment C1. This allows us to compute
>C1
1
z [ĝ(z)]

K dz=>0p i dh=−ip. Replacing into (21), we obtain the value of
the integral in (20) and find that a0=1/2 for any Pc(x) and any K.

4.3. Computing the Bifurcation Diagram

We can now combine the main results of Sections 4.1 and 4.2 to find
an analytic expression relating g and Y. We have shown that I(t) is a
polynomial of degree K in s(t). Therefore, in terms of s(t), the Eq. (12)
governing the dynamics of the network becomes

s(t+1)=2(1−2g)(a1s(t)+a3[s(t)]3+·· ·+aK[s(t)]K) (22)

In the limit tQ., s(t) will asymptotically approach a fixed point s which,
from the above equation, obeys

s=2(1−2g)(a1s+a3s3+·· ·+aKsK) (23)

It is important to point out that if the probability function Pc(x) is sym-
metric, there is no phase transition. Indeed, if Pc(x) satisfies Pc(x)=
Pc(−x), then the imaginary part ĥ(l) of its Fourier transform would be
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identically zero. It follows from Eq. (20) that am=0 -m and, therefore,
Eqs. (22) and (23) give the trivial result s=0 as the only possible solution
for the dynamics.
Equation (23) is always satisfied by s=0. However, as g is varied, this

solution becomes unstable as other ones appear. Discarding the solution
s=0 and solving Eq. (23) for g, we get

g=
a1−1/2+a3s2+·· ·+aKsK−1

2(a1+a3s2+·· ·+aKsK−1)
(24)

By dividing the polynomials and neglecting the terms of order s4 and higher
in the resulting expression,5 we obtain

5 As it can be seen in Figs. 2 and 3, the order parameter vanishes continuously when passing
from the ordered to the disordered phase. Therefore, in the vicinity of the phase transition
s % 0.

g−gc=
a3
4a21
s2 (25)

where gc is defined as

gc=
1
2
11− 1

2a1
2 (26)

Since a3 < 0, Eq. (25) implies that real non-zero solutions for s in (23) only
exist if g < gc. For g > gc the solutions of Eq. (25) are imaginary and there-
fore s=0 is the only acceptable solution of (23). We thus conclude that a
phase transition with critical exponent 1/2 will occur at g=gc. The explicit
behavior of the order parameter Y=|s| near the transition will be

Y=˛
2a1
`|a3 |

(gc−g)1/2 for g < gc

0 for g > gc

(27)

5. EXAMPLES OF THE ANALYTIC SOLUTION

In this section we compare our analytic solution with the numerical
results presented in Section 3.
We consider first the case with cij=1 for all connections. The PDF of

these connection weights is then Pc(x)=d(x−1), and we have

P̂c(l)=F
.

−.
d(x−1) e ilx dx=cos(l)+i sin(l) (28)
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Therefore, the coefficients am are given by

am=
−im+1

2p
1K
m
2 F.
−.

1
l
[cos(l)]K−m [sin(l)]m dl (29)

For the other case, in which the connection weights are uniformly distrib-
uted in the interval [0, 1] as given in expression (5), we get

P̂c(l)=F
1

0
e ilx dx=

sin(l)
l
+i
1− cos(l)
l

(30)

and the corresponding coefficients am are given by

am=
−im+1

2p
1K
m
2 F.
−.

1
lK+1

[sin(l)]K−m [1− cos(l)]m dl (31)

We evaluated the integrals in (29) and (31) for the case K=11, which was
studied in Section 3. By replacing them into Eq. (24) we explicitly obtain g
as a function of s for these two particular cases. The solid curves on Figs. 2
and 3 show the analytic bifurcation diagram that is found through this
procedure. The agreement with the results of our numerical simulation is
excellent, confirming our assumption that all elements can be considered
as independent random variables, even if the network connections and
weights are kept fixed throughout the evolution of the system.
Once the values of the coefficients am are obtained, the critical noise

value gc can be readily calculated by using Eq. (26). Figure 5 shows a log–
log graph of the vanishing value of Y as a function of gc−g, both for the
constant connection weight case (gc 4 0.3153) and for the uniform distri-
bution weight case (gc 4 0.2838). These results are the same that were pre-
sented in Section 3. On the displayed windows, finite-size effects around gc
are not visible. As can be seen on this figure, the numerical results coincide
perfectly with the analytic solution (24) (solid curve) and with the asymp-
totic behavior given in (27) (dashed line).
Figure 6 shows the critical noise level gc as a function of the connecti-

vity K for the two particular cases studied. As the connectivity is increased,
the phase transition appears at higher levels of noise and it is increasingly
hard to disorder the system. As the system becomes more and more
correlated, gc will asymptotically approach its maximum value of 1/2 (data
not shown). For the case in which cij=1 for all connections, the majority
rule is not well defined for even values of K, since there can be equal
number of elements with si=+1 and si=−1. This justifies the degeneracy
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Fig. 5. Log–log plot of the order parameter Y as a function of the distance to the critical
noise value gc−g. The left side graph corresponds to the case with equal connection weights
cij=1. The right hand graph is for uniformly distributed connection weights. The values of
gc=0.3153 (left) and gc=0.2838 (right) were obtained from Eq. (26). The numerical results
(circles) and the analytic solution (solid line) approach asymptotically the dashed line
representing the bifurcation form (27).
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Fig. 6. Critical noise level gc for various values of the connectivityK and two different weight
distributions: cij=1 for all connections (circles) and cij uniformly distributed in [0, 1] (squares).
As the connectivity increases, the amount of noise needed to disorganize the system must
increase. For largeK, the value of gc will tend asymptotically to themaximumnoise level 1/2. For
K [ 2 both cases have gc=0, and the system becomes disorganized for any noise g > 0. In the con-
stant weight case, the values of gc at consecutive odd and even values of K are equal (see text).

538 Huepe and Aldana-González



observed for gc with respect to consecutive odd and even values of K. For
K=2 the system will be disorganized at any gc > 0 and no phase transition
occurs.

6. CONCLUSIONS

We have shown the existence of a noise-driven phase transition in a
neural network with random connections. We found an exact analytic
solution of the stochastic equation which governs the dynamics of the
system. By finding its fixed points as a function of noise we constructed the
bifurcation diagram, which shows that the phase transition is of second-
order with a critical exponent of 1/2.
Besides the randomness of the network connection, our work was

carried out with very few assumptions. One of these was to consider the
connection weights as statistically independent variables. This condition,
however, is not satisfied by many models of interest such as the Hopfield
neural networks. (3) It would therefore be of great interest to generalize our
approach to cases in which the connection weights are statistically
correlated. Given that these conditions are satisfied, the existence of the
phase transition only seems to require that the PDF of the connection
weights Pc(x) is a non-symmetric but otherwise arbitrary function, as
shown on Section 4.3.
The general framework under which the results on this paper were

derived leads us to believe that this type of noise-driven phase transitions
from an ordered to a disordered state must be a robust feature of systems
with elements that are somehow randomly connected. (23)
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